Mathematical Neuroscience

What is mathematical neuroscience? Is it simply an interdisciplinary field that aims at modelling
neural processes using mathematics? Most likely this is a perfectly respectable working definition,
though probably worth qualifying with the statement that it has both practical and theoretical
applications in neurobiology. However, when one digs a bit deeper into the historical use of math-
ematics in neuroscience it may be more useful to distinguish between computational, theoretical,
and mathematical neuroscience proper. Computational neuroscience aims to be quantitative
and often involves building detailed biophysical models of neurons and networks to study spe-
cific neuronal phenomena (such as network oscillations, learning, and memory). In this field
mathematics is most often used hand-in-hand with computational tools to numerically explore
model behaviour. The theoretical neuroscientist is more concerned with building testable, pos-
sibly metaphorical, theories for understanding the operation of neurobiological circuits. As such
theoretical neuroscience also makes use of quantitative tools, which often, though not necessarily,
include mathematics and computation. So that brings us back again to the question of what is
mathematical neuroscience?

Mathematical neuroscience is certainly not just the reserve of the formally trained mathematician.
Rather it is an area of neuroscience where the use of mathematics is key in elucidating the
fundamental mechanism responsible for experimentally observed behaviour. In illustration of this
point it is worth mentioning some success stories, perhaps foremost being the work of Alan
Hodgkin and Andrew Huxley on a mathematical model of the action potential (reviewed in [1]).
The conceptual idea behind their work is that cell membranes behave like electrical circuits, and
that the flow of ionic current in their circuit model is gated by state-dependent conductances.
The great insight of Hodgkin and Huxley was to express (and subsequently fit) the dynamics
of these gating variables (representing membrane channels) using the mathematical language of
nonlinear ODEs. Together with Sir John Eccles, the pair received the Nobel Prize in Physiology
or Medicine in 1963 “for their discoveries concerning the ionic mechanisms involved in excitation
and inhibition in the peripheral and central portions of the nerve cell membrane”. In essence their
mathematical work describes a model of excitable tissue that remains the basis of pretty much
all conductance based neural models to date.

Another notable success in mathematical neuroscience can be attributed to Wilfrid Rall, who in
the 1960's developed the cable model of the dendritic tree (see [2] for a survey of his work).
Dendrites are strikingly exquisite and unique structures. They are the largest component in both
surface area and volume of the brain and their specific morphology is used to classify neurons
into classes: pyramidal, Purkinje, amacrine, stellate, etc. Cable theory uses coupled PDEs to
describes how membrane potential spreads along the dendritic branches in response to a local
conductance change (synaptic input). Using his mathematical formalism, Rall showed that there
is a subclass of trees that are electrically equivalent to a single cylinder whose diameter is that of
the stem (near the soma) dendrite. To a first approximation, many neurons (e.g. a-motoneuron),
belong to this subclass, though cortical and hippocampal pyramidal cells do not. Importantly
Rall's “equivalent cylinder” model for dendritic trees allows for a simple analytical solution and
this has provided the main insights regarding the spread of electrical signals in passive dendritic
trees.

As a final example we turn to work on neural field equations in the 1970's, by people such as Hugh
Wilson, Jack Cowan, Shun-ichi Amari, Paul Nunez and Hermann Haken (for a recent overview see
[3]). These are tissue level models that describe the spatio-temporal evolution of coarse-grained
variables such as synaptic or firing rate activity in populations of neurons, and often take the form
of integro-differential equations. The sorts of dynamic behaviour that are typically observed in
neural field models include spatially and temporally periodic patterns (beyond a Turing instability),
localised regions of activity and travelling waves. The mathematical study of such equations and
their solutions has proven relevant to understanding EEG rhythms, mechanisms for short term



memory, motion perception and drug-induced visual hallucinations. In this latter context the use
of symmetric bifurcation theory has shown that neural activity patterns underlying common visual
hallucinations can be accounted for in terms of certain symmetry properties of the anisotropic
synaptic connections in visual cortex (requiring the use of a novel representation of the planar
Euclidean group) [4].

As well as the above exemplars of the practice of mathematical neuroscience, it is appropri-
ate to mention some of the tools in the arsenal of the mathematical neuroscientist. It is clear
that techniques from nonlinear dynamical systems theory and mathematical physics have proven
useful to date. Indeed, seeded by successes in understanding nerve action potentials, dendritic
processing, and the neural basis of EEG, mathematical neuroscience has moved on to encompass
increasingly sophisticated tools of modern applied mathematics. Included among these are Evans
function techniques for studying wave stability and bifurcation in tissue level models of synaptic
and EEG activity, heteroclinic cycling in theories of olfactory coding, the use of geometric singu-
lar perturbation theory in understanding rhythmogenesis, using stochastic differential equations
to treat inherent neuronal noise, spike-density approaches for modelling network evolution, the
weakly nonlinear analysis of pattern formation, the role of canards in organising neural dynamics,
and the use of information geometry in developing novel brain-style computations. The field is
now in the healthy state where not only is mathematics having an impact on neuroscience, it is
simultaneously motivating important research in mathematics. In recent years a number of high
profile mathematical institutes, including the Mathematical Sciences Research Institute (Berkeley;
2004), the International Centre for Mathematical Sciences (Edinburgh; 2005), and the Centre
de Recerca Matematica (Andorra; 2006), have all held workshops with the title “Mathematical
Neuroscience”. As a further indication of the vitality of the field it is noteworthy that the re-
cently formed Mathematical Biosciences Institute (Ohio) devoted its first year focus (2002-2003)
to mathematical neuroscience.

New directions of research that will have most impact on neuroscience are likely to include
advances in the analysis of systems with asymmetry and inhomogeneity, and in the understanding
of the role that noise, delays, feedback and plasticity play in shaping the dynamic states of
biological neural networks. Precisely these topics will be treated at the upcoming “Mathematical
Neuroscience” workshop to be held at the Centre de Recherches Mathématiques, Université de
Montréal in September 2007. It would appear that the field of mathematical neuroscience is rife
with good problems and wide open for fun to be had with mathematics, by both mathematicians
and neurobiologists alike.
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