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Letter from the President 
 
Dear Colleagues and Members, 

 
In a few days the 9

th
 Conference of the European Society for Mathematical and Theoretical 

Biology will take place in Gothenburg. Like the previous ones, this Conference will host a huge 

number of presentations (the schedule includes 42 mini-symposia and other 271 contributed talks) on 
a very wide array of topics, ranging from microbial communities to blood flow, from the dynamics of 

viral hepatitis to virtual-tissue simulations. What all presentations will have in common is the 

development of a theoretical approach and of mathematical tools to analyse relevant problems in 

biology and medicine, as is the Society’s aim. The Conference will definitely give a wide overview of 
research in the area in European countries, but also in many other parts of the world. 

 

As an appetizer, this issue contains an extended abstract of the thesis by Andreas Raue winner of the 
Reinhart Heinrich Doctoral Thesis Award 2013, as well as two contributions describing new 

research activities. I hope you will find interesting reading this issue. 

 
An important event that will take place during the Conference is the General Assembly, where all 

members can discuss in person about the state of the Society and future directions.  In the Assembly, 

new candidates for the Society Board will be presented to prepare for the elections that will take place 

(on the Web site) later this year. As you may remember, 5 of the 10 Board members (including me) 
will end their mandate this year, and will have to be substituted by 5 new members; this is a very 

important stage in the Society, ensuring that everybody feels involved in the Society functioning, and 

that new energies get into the Society and make it reach new directions. We current Board members 
have contacted some potential candidates, but we encourage you all to make other suggestions. 

 

I believe that there is ample room for the Society to increase its role in academic and scientific 
policies, and to help the visibility of researchers in mathematical biology. We collaborate on these 

issues with many other societies, from the “sister” Society on Mathematical Biology, to the 

“umbrellas” European Mathematical Society and International Council for Industrial and Applied 

Mathematics, but much more remains to be done. 
 

The other main event organized by the Society for this year is the 5
th
 edition of the ESMTB-EMS 

Summer School, that will be held as part of The Helsinki Summer School on Mathematical Ecology 
and Evolution from August 17 to 24 focussing on the Dynamics of Infectious Diseases. 

 

The Society supports also other events going on this year, e.g. the International Conference MPDE'14 

“Models in Population Dynamics and Ecology” at Turin on August 25th-29
th
, and the CIME-CIRM 

Course “Mathematical Models and Methods for Living Systems” at Levico, Italy, on September 1 - 

September 6. Limited travel funds for young scientists are also available.  

 
As this is my last presidential address, I wish to thank you all for support, and especially those that 

have contributed more to society activities. In this respect, I think we should all deeply thank Andreas 

Deutsch who has served as Society’s Treasurer for the past 12 years, and is now definitely ending his 
mandate. His activities both as Treasurer and responsible for the web site have given a great 

contribution to keeping the Society alive and in shape. 

 

I conclude by reminding you of the next Conference that will take place, jointly with SMB, already in 
2 years in 2016 in Nottingham, and by inviting you to renew the membership, if you forgot to do so 

(you can check your payments at the web site www.esmtb.org ).   

  

http://www.esmtb.org/
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Minutes of the ESMTB Board meeting  
 
Koper, Slovenia 
30

th
 November 2013 

 

Meeting starts at 9.40 

Present: Barbara Boldin (BB, Minutes), Reinhard Bürger (RB), Andreas Deutsch (AD), Peter Jagers 
(PJ), Andrea Pugliese (AP, Chair), Ryszard Rudnicki (RR), Vitaly Volpert (VV) 

Absent: Miguel Herrero, Daphne Manoussaki, Roeland Merks 

 

1. ECMTB 2014  

 
PJ gives an update on ECMTB 2014: 

 The list of plenary speakers is finalized and the conference poster is being sent to all Society 

members. Information should also be sent to SMB Newsletter. RB offers to help promoting 

the conference in the evolutionary biology community.  

 The conference website http://ecmtb2014.org/ is operational. Online registration is open, the 

website contains information about the fees for different categories (regular, student and 

ESMTB/SMB members). Since student ESMTB members can apply for a travel grant from 

ESMTB, AD suggests to add a link to ESMTB website. RR adds that an online convertor 
between SEK and EUR would be welcome.  

 Online abstract submission is open, so is a call for mini-symposia proposals. Up until the 

end of November, eight suggestions for mini-symposia were submitted. The deadline for 

mini-symposia proposals is extended to 1
st
 January, 2014. To encourage more proposals, e-

mail reminders should be sent to current and previous Society members. The conference 

website is reviewed by Board members and some time is spent on discussing the form of 

mini-symposia sessions and abstract classification during submission. AD suggests that 

synchronisation of mini-symposia would be welcome and that speakers, as well as mini-
symposia chairs, might welcome a sound signal to keep the talks within time limits.  

 The poster session should be announced at the beginning of the conference. A deal is in 

preparation with Springer to offer an award for the best poster presented during ECMTB 

2014, as well as for the best talk of the conference.  

 The social programme of the conference includes a conference dinner, an excursion and a 

welcome reception by the city of Gothenburg. The conference website provides suggestions 

of several hotels in Gothenburg. AP suggests to add a link to hotel websites.  

 Springer has offered to publish conference proceedings. The idea of publishing the 

proceedings is discussed, no final decision is made. The conference may also provide ideas 
for a special issue of JMB.  

 A part of the conference is devoted to plenary lectures in connection with the Reinhart 

Heinrich  award. AD informs the Board that two Reinhart Heinrich award winners will 

present their theses during ECMTB 2014 and a time slot to include these two lectures should 

be scheduled.  

 AD suggests a book stand for Springer to promote JMB and ESMTB during ECMTB 2014. 

 A time slot for the Generaly Assembly of ESMTB should be scheduled.  

 

2. ECMTB 2016 

 
Markus Owen has kindly volunteered to organize ECMTB 2016 at the University Park Campus in 
Nottingham, UK. The time slot has not been fixed yet, it is suggested that the conference takes place 

in the first half of July. Preliminary ideas for a scientific commitee are discussed. Since the 2016 

conference will be a joint conference with SMB, the scientific commitee needs approval from both 

societies. Board members agree that the final decision regarding the venue, lecture rooms and the 
conference dinner should be made before ECMTB 2014.  

http://ecmtb2014.org/
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  For the first time in ECMTB history, the conference will take place only two years after the previous 

event. The Board members discuss whether ECMTB will thereafter adopt a two year gap, or return to 
triennial events. No final decision is made.  

 

3. Report of the treasurer 

 
AD hands out printed reports on ESMTB financial and membership data.  

 Membership development: data on ESMTB membership in the years 2003-2013 is presented. 

The number of memberships peaked in 2005 (in the year of ECMTB 2005 in Dresden). 

Despite the ECMTB in Krakow, the number of memberships decreased in 2011, the numbers 

are even lower in 2012 and 2013. Up until November, ESMTB had 123 paying members in 
2013. Some more payments are expected until the end of 2013. Payment reminders will be 

sent out. AD adds that a positive effect on ESMTB memberships is observed from flyer 

distribution. The next reminder will be sent out in January 2014, to allow new members time 

to register to ECMTB 2014 and to submit an abstract for the conference. AD presents 2013 
membership data categorized by members' country of affiliation, membership type and 

payment categories. Membership fees remain the same as in the previous year and can be 

payed by bank draft transfer or by PayPal. 

 ESMTB support of schools/workshops:in 2013, four requests for funding were received. The 

request to support MPDE in Osnabrück in August 2013 was later withdrawn. Three 

workshops (Mathways into cancer, Carmona, May 2013; Forum Biomath, Sofia, June 2013; 

Fourth Conference on Computational and Mathematical Population Dynamics, Taiyuan, May 
2013) were financially supported by ESMTB, each with a contribution of 1000 euro.  

 ESMTB travel support: in 2013, three requests were received for a travel support (one from 

France, India and Russia). All three applicants were granted the support of 500 euro each. 

More requests are expected in 2014, due to ECMTB in Gothenburg.  

 ESMTB account & audits: AD presents current account data. Until the end of the year it is 

expected that around 1000 euro will be spent for printing and distribution of ESMTB 
Communications. AD informs the Board that two auditors will review the Society's financial 

data of the past two years by the Gothenburg conference in June 2014.  

 
The end of AD's term as the Society's treasuer is approaching fast. AD suggests a name for his 

successor: a serious candidate, who is willing to take over as Society's treasurer. The candidate will 

present himself to the Board during the General Assembly in Gothenburg.  

 

4. Communication/Information/Promotion 

 
In addition to taking care of Society's finances, AD has also been responsible for Society's website 

and ESMTB Infoletter. The end of AD's term therefore calls for another Board member to step in and 
take over these responsibilites. AD and BB agree to arrange a smooth transition of these duties to BB.  

 

5. Board elections 

 
At the end of 2014, five members will end their term on the Board of ESMTB. These are: Andreas 
Deutsch, Miguel Herrero, Peter Jagers, Daphne Manoussaki and Andrea Pugliese. It is therefore time 

to start preparations for new Board elections. The Board proposes a preliminary list of potential 

candidates and agrees to finalize the list via e-mail exchanges by January and to send out  invitations. 
The candidates for the following Board elections will be invited to the General Assemby of ESMTB 

in Gothenburg, where they will have a chance to present themselves and their plans on how to 

contribute to the Society.  

 

6. Reinhart Heinrich award 
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The Reinhart Heinrich award anually honors the best PhD thesis in the field of mathematical and 

theoretical biology. The awarding committee currently consists of Nico Beerenwinkel, Carlos 
Braumman, Andreas Deutsch, Philip Maini and Stefan Schuster. AD reports that six applications were 

received by the committee in 2012. The awarding committee nominated as winner of the Reinhart 

Heinrich Doctoral Thesis Award 2012 Christoforos C. Hadjichrysanthou. A summary of the award 

winning thesis will published as the lead article in the 2013 issue of the European Communications in 
Mathematical and Theoretical Biology.   

 

7. JMB Perspectives 

 
The Perspectives series are published in JMB in the form of short articles, aiming to express topical 

issues in mathematical and theoretical biology.  Helen Byrne and Roeland Merks are in charge of the 

Perspectives series. In the absence of RM, and with no update received from Helen Byrne, the Board 

is unable to assess the current state of affairs with the series. AP is aware of one article submitted for 
the Perspectives series and one other article in preparation.  

  It is observed that Perspectives articles are not easily found on JMB website. AD suggests to contact 

the Springer representative Eva Hiripi for help in making the Perspectives series more visible. In 
addition, the ESMTB website needs an update to include all Perspectives articles published up to date.  

 

8. Communications of ESMTB  

 
VV describes preparations of the recent issue of Communications. The 2013 issue of Communications 
is ready and will be sent for printing early in December.  

 

9. Summer schools 

 
The 2014 EMS-ESMTB will take place between the 17

th
 and 24

th
 of August 2014 at the Linnasmäki 

Congress Centre in Turku, Finland. The focus of the school will be the Dynamics of infectious 

diseases. Lecturers are:  

 Odo Diekmann (University of Utrecht): Population dynamics of infectious diseases 

 Frank Ball (University of Nottingham): Stochastic models of epidemics  

 Thomas House (University of Warwick): Networks and epidemics  

 Michel Langlais (University of Bordeaux): Spatial dynamics of infectious diseases 

 Troy Day (Queen's University): Evolution of hosts and pathogens   

More information about the 2014 EMS-ESMTB school can be found on the school website  
http://mathstat.helsinki.fi/research/biomath/summerschool2014/ 

 

RR volunteers to explore the possibilites for organising the 2015 EMS-ESMTB school in Bedlewo, 
Poland. Some initial ideas for school topics are discussed and Board members agree to finalize the 

decission via e-mail before ECMTB 2014 in Gothenburg.  

 
The meeting ends at 15.50 

Barbara Boldin 

Secretary of ESMTB 
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Extended abstract of the awarded thesis 
 

 

Quantitative Dynamic Modeling: Theory and Application to Signal 

Transduction in the Erythropoietic System 

 
Doctoral Thesis by Andreas Raue 

 

Supervisor: Professor Jens Timmer 

 

 

 
The contents of this thesis summary are based on Raue et al. (2010), Raue et al. (2011), Raue et al. 

(2013) and Raue et al. (2014). In this thesis quantitative dynamic models are used to study these 
mechanisms, i.e. the dynamics of molecular compounds and their physical interactions, giving rise to 

emergent properties of biochemical processes inside the cell. However, the increasing size and 

complexity of both models and experimental data require efficient and reliable computational 
methods for model construction, calibration and uncertainty analysis of model predictions. Therefore, 

a detailed discussion and comparison of methods used for quantitative dynamic modeling is 

presented. The results suggest best practices for quantitative dynamic modeling and are summarized 
in a comprehensive protocol (Figure 1) that is complemented by source code 

(https://bitbucket.org/d2d-development/d2d-software/wiki/Home).  

 

 
Figure 1: Guide to quantitative 

dynamic modeling. A first candidate 

model is constructed based on prior 
knowledge. The model is calibrated 

using quantitative data based on 

specifically designed experiments. In a 

first iterative cycle (red) the model is 
refined until its output is sufficiently in 

agreement with the available data. In a 

second iterative cycle (blue) it is 
investigated if the desired predictions 

are sufficiently determined. If they are 

not sufficiently determined, for 
example because a part of the model 

necessary for the predictions has not 

been sufficiently covered by 

experiments, additional experiments 
have to be designed to improve the 

predictive power. In a third iterative 

cycle (green) the model predictions are 
validated using independent 

experiments. Finally, the model and its 

predictions can be analyzed to obtain 
novel insights into the dynamics of the 

system.  

 
The protocol is applied to two quantitative dynamic models of signal transduction in the 

erythropoietic system. Erythropoiesis is the production of erythrocytes, red blood cells. The first 

model describes the complex interactions between the hormone erythropoietin (Epo) and its 
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membrane receptor (Figure 2a; Becker et al. (2010)). The second model describes Epo induced 

JAK2/STAT5 signal transduction (Figure 2; Bachmann et al. (2011)). Phosphorylated STAT5 is a 
transcription factor that translocates into the cell nucleus and leads to the survival of erythroid 

progenitor cells. Both models yield insights into key properties of the dynamics of signal transduction 

in the erythropoietic system that, in combination, become important in a clinical setting. 

 

 

 

 
Figure 2: Quantitative dynamic models describing erythropoietin (Epo) signaling. (a) Epo receptor 

model. The model describes the interaction and the trafficking of Epo and of its membrane receptor 
(EpoR). The active complex Epo_EpoR can be internalized (Epo_EpoR i) and is either recycled back 

to the cell membrane or degraded (dEpo_i, dEpo_e). (b) Model of Epo induced JAK2/STAT5 

signaling. Epo induces transphosphorylation of JAK2 (pJAK2) and pJAK2 in turn phosphorylates 
EpoR (pEpoR). Subsequently, STAT5 is phosphorylated (pSTAT5) by both EpoR_pJAK2 and 

pEpoR_pJAK2 and shuttles to the nucleus where it induces target gene expression. Two of the target 

genes encode for the negative feedback regulators suppressor of cytokine signaling 3 (socs3RNA, 

SOCS3) and cytokine-inducible SH2-containing protein (cisRNA, CIS). Moreover, the protein 
tyrosine phosphatase SHP1 is activated (SHP1a) by pEpoR_pJAK2 and lead to dephosphorylation of 

the receptor complex. 

 
 

On the theoretical side, an approach that simultaneously calibrates the model parameters that 

determine the model dynamics and characterizes the measurement noise is proposed and compared to 

the standard approach. For model calibration, i.e. the estimation of unknown model parameters, the 
performance of multiple stochastic, deterministic and hybrid optimization algorithms are compared 

(Figure 3). These results show that the most accurate and efficient method is deterministic derivative-

based optimization using the sensitivity equations for the calculation of derivatives in combination 
with a multi-start strategy based on Latin hypercube sampling of the initial guesses for the parameters.  

             An alternative parameterization of the dynamics that exploits scaling invariances can further 

increase the performance of parameter estimation for larger applications. The alternative 
parameterization also facilitates a direct resolution of ambiguities in the parameterization of the 

dynamics that can lead to non-identifiability in the case of relative data. Non-identifiability indicates 

that model parameters cannot be determined from experimental data. Non-identifiability often induces 

non-observability of the dynamics. Using the profile likelihood approach two general strategies that 
resolve both non-identifiability and non-observability can be pursued: the design of new experiments 

and simplification of the model. Finally, for the quantification of uncertainty in model parameters and 

predictions, the results of the profile likelihood approach and of Markov-chain Monte Carlo sampling 
are compared employing both the Epo receptor model and the JAK2/STAT5 model. Interestingly, for 

the Epo receptor model, it is shown that the result of Markov-chain Monte Carlo sampling is 

misleading in the presence of non-identifiability (Figure 4). 
On the applied side, the Epo receptor model and JAK2/STAT5 model are introduced. The 

iterative cycle between experimentation, modeling and experimental design is elucidated in detail for  
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Figure 3: Performance analysis of parameter estimation using numerical optimization methods. (a) A 

two dimensional parameter estimation problem bearing multiple optima (global: A; local: B,C,D) is 
displayed for illustrative purposes. In the left panel, the traces in parameter space of two hypothetical 

methods with high (blue) and low performance (red) are displayed. 50 independent runs with each 

method are displayed; the circles indicate the results of the estimation. In real applications with high 
dimensional parameter spaces this visualization is not possible. However, the likelihood values 

corresponding to the estimation results can be compared systematically. (b) The visualization of 

optimization performance by sorting likelihood values increasingly is also possible for high 

dimensional problems. It reveals that the performance of the red method is low, i.e. results are 
unreliable, whereas the performance of the blue method is high, i.e. results are reproducible and 

reliable. (c,d) Visualization of performance using 100 independent optimization runs with each of the 

considered algorithms for both models. For illustrative reasons, the global optimum was centered to 
one. For stochastic optimization (gray), 12 different algorithms were used. For deterministic 

optimization, two different approaches for the calculation of derivatives were compared: (i) finite 

difference approximation (red) and (ii) analytically derived sensitivity equations (orange and blue). 
Initial guesses for the parameters were generated by Latin hypercube sampling. 
 

 

the construction and calibration of the Epo receptor model. Following the best practice protocol 

reliable predictions for both models can be obtained that lead to novel insights into the dynamics of 

the erythropoietic systems. The Epo receptor model explains how erythroid progenitor cells are able 

to interpret hormone concentration that can vary up to 1000-fold in vivo (Figure 5a,c). The 
JAK2/STAT5 model dissects the roles of two transcriptional negative feedback regulators that 

facilitate to control the signal over a broad range of hormone concentration that is forwarded from the 

Epo receptor level (Figure 5b). Finally, a quantitative link from hormone concentration via 
phosphorylated STAT5 in nucleus to the survival rate of erythroid progenitor cells could be 

established (Figure 5d).  
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Figure 4: Comparison of profile posterior approach (red) and MCMC sampling for the Epo receptor 

model. (a) For the initial experimental setup the posterior profiles (red) indicated that parameter kon is 

structurally non-identifiable, parameter kt is practically non-identifiable and parameter kde is 
identifiable. The histograms display the marginalized MCMC samples obtained by the MMALA 

algorithm. For the identifiable parameter kde both results of profiling and sampling agree quite well. 

Also for the structurally non-identifiable parameter kon the agreement is acceptable. For the 
practically non-identifiable parameter kt the results are substantially different. The profile shows that 

the MAP point is located at log10(kt) ≈ 1:8. However, the lion’s share of the marginalized MCMC 

samples propose log10(kt) to be > 0. (b) Taking into account more experimental data the posterior 

profiles for the extended experimental setup indicate that all parameters are now identifiable. The 
results of MCMC sampling and profiling are in good agreement. Interestingly, the MCMC samples 

for parameter kt for the extended setup are localized close to the MAP point of the initial setup, note 

the different scales on the x-axis for (a) and (b). The dashed red lines indicate the threshold that can 
be used to assess confidence intervals. 

 

Summary and Outlook 

 
In this thesis a comprehensive discussion and comparison of methods used for quantitative 

dynamic modeling was presented. Two models from signaling in the erythropoietic system, the Epo 

receptor model and the JAK2/STAT5 model, were developed and have been used as benchmark 
applications for the method comparison. The results are summarized in a best practice protocol that 

provides practical guidance for future applications. Model calibration and experimental design are the 

key steps in the quantitative dynamic modeling approach. The best practice protocol proposed here 
was awarded as best performing procedure in the Dialogue for Reverse Engineering and Methods 

(DREAM) in 2011, 2012 and 2013. 

The results that have been obtained for the erythropoietic system become clinically relevant in  
the context of cancer treatment. Traditional chemotherapy treatment kills cells that divide rapidly, 
such as cancer cells. However, also non-malignant cells that divide rapidly such as cells in the bone 

marrow, digestive tract, and hair follicles are affected. Therefore, a side effect of chemotherapy can be 

anemia, the lack of erythrocytes in the body that can be a serious thread for the health of patients. To 
counteract cancer induced anemia Epo can be administrated to enhance the production of additional 

erythrocytes. However, in the context of lung cancer adverse effects of Epo treatment were observed  
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Figure 5: Model predictions (a,b) that lead to novel insights into the biological systems and their 

independent experimental validation (c,d). Predictions for optimal parameter values are indicated by 

solid lines, the prediction uncertainty in terms of 95% confidence bands is indicated by shading. 
Independent validation data are displayed by asterisks. (a) Predicted Epo dose-dependency of 

occupied receptor complex (Epo_EpoR) integrated over 18 hours for decreasing values of the receptor 

turnover rate kt. (b) Predicted effect of CIS and SOCS3 single and double knock-out on the nuclear 
phosphorylated STAT5 (npSTAT5) steady state level for various doses of Epo. (c) Experimental 

validation for predictions shown in (a) using independent data from cells treated with Brefeldin A that 

reduces receptor turnover. (d) Experimental validation for predictions shown in (b) using independent 

data from cell survival studies for wild type and overexpression conditions. For predicting the cell 
survival rate the integrated response of npSTAT5 over 60 minutes was used. 
 

such as decreased survival prognosis for patients. This effect could be explained by the observation 

that certain lung cancer cell lines express the Epo receptor. Epo triggers survival signals for CFU-E 
cells. Likewise stimulation with Epo could be associated with a protection of cancer cells against 

chemotherapy treatment. Preliminary experimental results support this hypothesis. In analogy to the 

JAK2/STAT5 model for CFU-E cells presented here, we constructed a JAK2/STAT5 signaling model 
for a lung cancer cell lines. Comparison of the response properties of both models showed that the 

lung cancer cells potentially need higher doses of Epo to react in a comparable manner like CFU-E 

cells. This would suggest a safe range of Epo dose that allows stimulating the survival of CFU-E cells 

but would not lead to increase cancer progression. Experimental validation of this hypothesis is 
currently ongoing.  
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The increased speed of the drug-development process, generation of data and the rebirth of 

quantitative pharmacology calls for new tools and approaches, over and above the traditional 
exponential models and goodness of fit statistics. A mathematical/analytical approach then becomes a 

prerequisite to cast light on complex dynamics hidden in concentration-time, response-time and 

concentration-response profiles. 
In recent years the applications of mathematics in drug development has gained momentum. 

Even the FDA is considering approval of compounds in part on the basis of arguments based on 

modeling and simulation (cf. [1]). But there is a great variety of ways in which mathematical methods 
can play a role in drug discovery and development. 

On the one hand, the industrial scientist is often faced with the problem to make reliable 

predictions about such issues as optimal dose or assessment of safety, on the basis of data about onset, 

intensity and duration of response, when quantitative information about the underlying physiology is 
limited. The challenge is then to combine available physiological knowledge, well designed 

experiments and mathematical analysis to develop a model which can be used to make such reliable 

predictions. 
On the other hand, with expanding knowledge about biological and physiological processes, 

more systems-based studies are being carried out in which mathematical ideas about dynamical 

systems are used, for instance, to model complex regulatory networks (cf. [2], [3]). 
In this note we present two case studies where physiological information is limited. They 

demonstrate how information about magnitude and duration of drug impact can be extracted from 

response-time data sets when utilising a mix of physiological information and dynamical systems 

theory. 
The two case studies differ in that in the first study, information is available about the drug 

concentration in the blood plasma. In many cases it can be measured separately. Here the question 

centres on how this concentration versus time profile results in the corresponding response of the 
system (Pharmacodynamics). In the second case study the distribution of the drug in the body is not 

known. This situation arises when drug is administered locally, e.g., into the eye or through inhaling. 

 

Case Study 1: This case study is based on a study of Siemers et al. [4] on the impact of a 𝛾-

secretase inhibitor on the plasma concentration of Amyloid beta (A𝛽1−40), the inhibitor being 

supplied orally in three doses: 60, 100 and 140 mg. Plasma concentration profiles demonstrate simple 

first-order drug elimination. However, it leads to complex and counter-intuitive response versus time 



 12   

 

curves. 

 

 
Figure 1 Response versus time graph of Amyloid beta A𝛽1−40 after acute dosing of 60 (red), 100 

(grey) and 140 mg (blue) of a 𝛾-secretase inhibitor [4]. The numbers in circles refer to baseline (1), 
initial inhibitory action (2), duration of the inhibitory action (3), rebound (4) and (5) and return to the 

pre-dose baseline value (6). 

 

 

The data, shown in Figure 1, exhibit several surprising features: (i) The impact of the 𝛾-

secretase inhibitor shifts from initial inhibition to eventual stimulation. (ii) The point where one goes 

over into the other, i.e., the time at which the response curve crosses the baseline (Response = 100%) 
shifts sub-linearly to the right, and (iii) As the drug dose increases, the rebound, if anything, 

decreases. This latter property is contrary to what one normally expects from systems involving 

feedback. 

The drug being a 𝛾-secretase inhibitor, the stimulatory effect comes as a surprise. Evidently 

the drug has two, opposing, effects, the inhibiting one dominating initially, and the stimulating one at 

later times. Since the plasma concentration decreases with time, inhibition appears to be associated 

with high concentration and stimulation with low concentration. 
It turns out that, within the framework of indirect response models, or Turnover models (cf. 

[5]), such dynamics can be reasonably well described mathematically by: 
𝑑𝑅

𝑑𝑡
= 𝑘in𝐼(𝐶) ⋅ 𝑆(𝐶) − 𝑘out𝑅 

where 𝐼(𝐶) and 𝑆(𝐶) model, respectively, the inhibitory and the stimulatory impact of the drug - at 

concentration 𝐶 - on the dynamics of the response 𝑅. Typical examples of such functions are 

𝐼(𝐶) = 1 − 𝐼max

𝐶𝑛

𝐼𝐶50
𝑛 + 𝐶𝑛

 

𝑆(𝐶) = 1 + 𝑆max

𝐶𝑛

𝑆𝐶50
𝑛 + 𝐶𝑛

 

where 𝐼𝐶50 and 𝑆𝐶50 are referred to as the potencies of the drug, 𝐼max and 𝑆max are maximal extent of 

their impact, and 𝑛 the Hill exponent. Here, 𝑘in and 𝑘out are, respectively a zero- and a first order rate 

constant. Since inhibition dominates stimulation at high values of 𝐶, and stimulation dominates at low 

values of 𝐶, we must conclude that 𝐼𝐶50 > 𝑆𝐶50. In fact, careful study of the data yields estimates for 

the two potencies. 
 

Alternative turnover models are also possible: inhibition affecting 𝑘in as well as 𝑘out, or 
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stimulation affecting both terms, or inhibition and stimulation both affecting 𝑘out, in each case 

adjusting the potencies appropriately. Utilising what is known about the physiology, together with 
information from the data and the dynamics of the four different systems (cf. [6]) may point to which 

of these models fits the data best for different drug doses. 

 

Case Study 2: This case study is concerned with the release of acetylcholine (ACh) caused by 

three single subcutaneous administrations (20, 40 and 80 μmol ∙ kg−1) of TC-1734, an active neuronal 

nicotinic ACh receptor modulator which enhances the release of ACh into the cerebral cortex of rats. 

It has been shown to exhibit memory enhancing properties in rats and mice (cf. Gatto et al., [7]). 
In Figure 2 we show the increase of the ACh release as it evolves over time caused by the 

three doses of TC-1734 to rats. 

 

 

 
 
Figure 2 Per cent basal release (%) of ACh-versus-time data following three subcutaneous 20, 40 and 

80 μmol ∙ kg−1doses of TC-1734 to rats [7]. Data are normalized to 100 % at baseline. The initial rise 

in response is slightly delayed (1), and displays a peak-shift with increasing doses (2 - 4). The highest 
dose displays a very flat top which is an indication of saturation of response (5). The response then 

returns to the pre-dose baseline again (6). 

 
 

Conspicuous features of the data are (i) an initial delay, (ii) a peak shift with increasing drug 

dose 𝐷, (iii) a shift of the elimination phase which seems proportional to log(𝐷), and (iv) for the 

higher doses, saturation of the response. 
In this case study, no pharmacokinetic information is available and the dynamics needs to be 

assessed purely on the basis of response versus time data for different drug doses and routes. The 

approach is often referred to as Dose-Response-Time analysis (DRT) and goes back to the late 1960’s 
(cf. [8], [9]). 

It is assumed that the drug enters a hypothetical biophase, where it follows its own kinetics 

and then drives the pharmacodynamic response. The objective is now to design two models: one for 

the biophase and one for the pharmacodynamic response, all on the basis of response-time graphs for 
different drug doses and drug routes. 

A typical problem one encounters here is how to decide whether a particular feature of the 

response-time graph is due to properties of the biophase model or to the pharmacodynamic model. 
Thus, how does one decide whether saturation effects are due to nonlinearity in the biophase kinetics 

or in the pharmacology, or what determines the decay of response: elimination of drug from biophase 

or pharmacodynamic processes. 
A detailed analysis of the data, exploiting the drug route, different drug doses, physiological 

information and mathematical properties of the models involved, suggests here a first order model for 

the drug in biophase (amount 𝐴𝑏) which stimulates the production term 𝑘in of a turnover model, 

which in turn is coupled to an array of transduction compartments, as shown in Figure 3 (cf. [10] for 
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more details). 

 

 

 
Figure 3 A first order model for the amount of drug in biophase (𝐴𝑏), which stimulates the production 

term 𝑘in of a turnover model through the function 𝑆(𝐴𝑏), coupled with a transduction pathway. In this 

model, 𝑘𝑎, 𝑘 and 𝑘out are first order rate constants. 
 

Conclusion: In this note we have focused on the environment many industrial scientists 

involved in Modelling and Simulations find themselves. The requirement to come up with a model 
which accurately predicts the impact of a drug on the basis of experimental data, whilst the 

physiological and biochemical knowledge of the processes involved in the route from drug input to 

pharmacological response are only partially known. In this Data Driven
1
 endeavour, which has much 

in common with addressing an inverse problem, mathematical analysis can plays a central role in 

teasing out the physiology hidden in the data. 
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Abstract: Modelling contagious diseases needs to incorporate information about social networks through 

which the disease spreads out as well as data about demographic and genetic changes in the susceptible 

population. In this paper, we propose a theoretical framework (conceptualization and formalization) 

which seeks to model obesity as a process of transformation of one’s own body determined by individual 
(physical and psychological), inter-individual (relational, i.e., relative to the relationship between the 

individual and others) and socio-cultural (environmental, i.e., relative to the relationship between the 

individual and his milieu) factors. Individual and inter-individual factors are tied to each other in a socio-

cultural context whose impact is notably related to the visibility of any body being exposed on the public 

stage in a non-contingent way. The question we are dealing with in this article is whether such kind of 

social diseases, i.e., depending upon socio-environmental exposure, can be considered as "contagious". 

In other words, can obesity be propagated from individuals to individuals or from environmental sources 

over a whole population?  

 

Keywords: social networks; contagious social diseases; obesity; homophilic rule  
 

 

 

1     Introduction 

 
     Social and socio-infectious diseases (like Sexually Transmitted Diseases, SMD’s) are numerous 

and obesity can be considered as one of the most characteristic of what could be identified as a social 

“contagious” disease. Both stigmatization and mimicking [1] constitute the way of dissemination of 

obesity into a family or a social network. Obesity is defined as an abnormal or excessive 
accumulation of fat in adipose tissue (Body Mass Index or BMI≥30, where BMI=Weight (kg)/Size

2 

(m
2
)) leading to more or less important health problems at the individual level.  

     Currently, obesity would reach an pandemic development everywhere in the world: according to 
the latest world estimates of WHO (World Health Organization), obesity rate would have tripled 

between 1980 and 2005 [2,3]. This rate of development suggests that this pathology involves a socio-

cultural problem grafted into a predisposition at the individual level. All specialists agree now that, for 
decades, we are witnessing an increase in worldwide obesity prevalence. This is true in developed as 

well as in developing countries. No society seems to be immunized against this pandemic. Data from 

MONICA (WHO) project [2] show that obesity prevalence in the majority of the European countries 

increased in 10 years (1992-2002), going from 10 to 20% in men and from 10 to 25% amongst 
women. In France, between 1980 and 2006, obesity prevalence went from 6.4% to 16% in men and 

from 6.3% to 17.6% amongst women [3,4]. Based on these facts, several studies have been performed 

to identify risk factors associated with this affection as well as to contain the pandemic, which became 
a real public health problem [5]. It is well known that obesity has a genetic component as a familiar 

predisposition towards this affection testifies. However, this genetic component does not explain the 

increasing (spectacular) progression in disease prevalence. Additional behavioral, psycho-social, and 

economic factors must be considered [6-8]. In this context, Christakis et al. showed the possibility of 
person to person obesity contagion in a social network [9]. Moreover, Cohen et al. suggested that 

obesity diffusion could occur via a common exogenous source applied to a set of individuals [10].  

     Realistic models of contagious diseases incorporate information about the social networks through 
which the disease spreads out as well as data about demographic and genetic changes in the 

susceptible population. They also include all the possible knowledge about the contacts between 

susceptible and sick individuals. In Section 2, we will present the mathematical framework necessary 
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to take into account at a microscopic level the dynamics of contacts between susceptible and sick 

individuals. Then we will introduce the description of the dynamics of obesity in Section 3, a social 
pathology partly caused by collective behaviours mimicking some dominant habits of nutrition 

transmitted through social networks. Obesity spread modelling will use the notion of homophilic 

graphs.  

     To investigate obesity in a multi-factorial manner, we take into account inseparable factors to 
analyze the impact through time that obese individual transformation may have on the social 

structure. With this aim, we develop a network model in which individual interactions are in part due 

to homophilic selection/deselection, i.e., a process of preferential attachment and detachment of inter-
individual links according to characteristics of the individuals involved. Homophily is here defined as 

the tendency of an individual to create links with other individuals sharing similar attributes with him 

and to cut links with other dissimilar individuals. Homophily suggests that individuals tend to interact 
with those who resemble them. Second, and reciprocally, we study if obesity can be considered as a 

“contagious” social disease. So we study the role which could be played by the structure of the social 

fabric in the increase and current development of obesity.  

     We evaluate the impact of relations between individuals (micro-level) as well as the impact of 
relations between districts (meso-level) and between countries (macro-level). This approach 

highlights the necessity to integrate the dynamics of each scale to better understand the evolution of 

the pathology. It is proposed two stochastic models: i) an epidemiological compartmental model and 
ii) an individual centered network model, considering three influences: exogenous heterogeneous 

(individual-cultural), exogenous homogeneous (individual-social) and endogenous (individual-

individual). Altogether, this research study on obesity will allow to investigate the social and cultural 
dimension involved in being and transforming one’s body.  

     In Section 4, we present elements of demographic dynamics to add to the social contagion 

dynamics. Eventually, we present in Section 5 a proposal of an obesity preventive policy and in 

Section 6 we propose some perspectives about a new more realistic modelling of the contact 
dynamics. 
 

2     Social networks and obesity 
 

2.1. General graph framework 

     Given that each individual is immersed in a social system, linked together with other individuals 

through diverse and complex interactions, each individual i can then be characterized, in a first 
approach, by their number of neighbors ki, whereas the overall system is characterized by the 

connection structure between individuals. To study the role played by social interactions in obesity 

spreading, five simple network topologies are considered to describe inter-individual connections: 

random (Erdös-Renyi type), scale-free, small-world and two empirical network topologies.  
     The empirical networks are built from degree distributions found for Christakis et al. [8] in real 

networks. On Figure 1, we can find examples of architecture simulated following the above 

topologies. We will use these architectures for starting from initial configurations of the a priori 
network, before applying the homophilic rule and converging to an “attractor” of its dynamics, i.e., a 

stable configuration of links and node states of the interaction graph related to the social network 

involved in contagion of the obesity.  
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Figure 1. Simulation of various initial architectures: random, scale-free, small world, empirical (1 and 2) 

 

2.2. Social contagion 
     We have modeled the social contagion mechanisms through which the disease can propagate from 

individuals to individuals or from environmental sources over populations, individuals changing of 

state like in biological regulatory networks for which many theoretical and numerical tools have been 
recently developed [13-16].  

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 

 

 

Figure 2. Inter-individual relationships between obese and non obese individuals in a social context  
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     On Figure 2, each individual is represented in its social neighborhood: he can influence (orange 

and red arrows) the narrow context to which he belongs. Hence, each individual in a given social sub-
network will receive direct influences from his neighbors (inter-individual factors) as well as 

influences from his environment (social factors) depending on his own context. Under theses 

influences, some individual (in blue on Figure 2) can become obese and other not (in green on Figure 

2). 
 

3     Obesity dynamics of links and states 

 
3.1. Homophilic graphs 

     The function homophily (resp. heterophily) will be defined as the tendency of an individual to 

create (resp. cancel) links with other individuals sharing similar (resp. dissimilar) attributes, by 
playing with probability agents involved in an infectious contact having a given state (e.g., for 

obesity, susceptible S, overweight W and obese O) before contact. The tendency an agent or node i has 

to create or cut a link with another agent j in a social contagion graph G having N agents, depends on 
similarity distances d(i,j) in the graph. Let us suppose that there are two possible states x and y for the 

nodes of G and denote at time t by Lx,y(t) (resp. Lx,x(t)) the number of heterophilic (resp. homophilic) 

links of type x, Lx(t) the number of links coming from type x nodes and L(t) the total number of  links, 

and by  the relaxation time. We suppose in each time lapse of duration , a certain proportion of 

nodes (agents) creates (resp. cancel) links toward nodes being in same (resp. different) state, with a 
certain tolerance threshold. Then the simulation follows the successive steps: 

 

1. At t = t0, generate the random value  from an exponential distribution of parameter 1/ß 

2. At t = t0 + , 

- choose a fraction  of nodes in G. Let M = N. 
- for each node i of these M nodes (i=1,…,M), define its state x(i) (known initial conditions), its out-

degree ki  IN (equal to the number of links exiting from i), generate its tolerance to the difference, a 
real number hi, 0 ≤ hi ≤ 1, from a probability distribution g(h) and do the following operations: 

– for ki = 0, connection from i to j: 
- choose a node j by chance among N–1 other nodes  

- create a link from i to j with probability hi
d(i,j)

, where d(i,j) is the direct distance between i 

and j, with 3 levels: 0, 1 and 2, defined as follows: 

     d(i,j)=0, if x(i) = x(j) 
                          =1, if x(i)=S, x(j)=W and vice versa 

                          =1, if x(i)=W, x(j)=O and vice versa 

                          =2, if x(i)=S, x(j)=O and vice versa 
– for ki ≥ 1, connection or disconnection from i to j: 

- if Vi denotes the set of neighbours of i, let choose a node j among the Vi=ki neighbours of 
i with the probability 1/ki. We will denote by Vj

i
 the set of the neighbours of j, minus i 

- let (i,j) be the total similarity distance between nodes i and j. The link between i and j will 

be cut with the probability 1-hi
(i,j)

, where the total distance  is defined by: 

(i,j) = d(i,j), if c(i,j) = 0 

          = d(i,j) + (1-)c(i,j), if c(i,j) ≠ 0, 

       where the indirect distance c(i,j) = kVj i  d(i,k)/(kj-1)  
                                                            = 0, if kj=1 
- if the link between i and j has been cut, we choose by chance a new node k in G \Vi \ Vj 

i
 and 

we create a link from i to k with the probability: 

Prob(ik) = f(d(i,k))nx(k)hi
d(i,k)

/[lG\Vi\Vji  nx(l)hi
d(i,l)

], 
where nx(k) is the number of nodes in G \Vi \ Vj 

i
 having the same state as k, i.e., nx(k)= nS (resp. 

nW, nO) if k is susceptible (resp. overweight, obese). We will consider in the simulations 3 
versions for the function f: 

           - Version 1: f(d(i,w))=1, if d(i,w)=0; =0 elsewhere 

           - Version 2: f(d(i,w))=1, if d(i,w)=0 or 1; =0 elsewhere 
           - Version 3: f(d(i,w))=1, if d(i,w)=0, 1 or 2,  
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these versions being used in the individual centred network for representing three types of 

progressively increasing influence: exogenous heterogeneous (individual-cultural, Version 1), 
exogenous homogeneous (individual-social, Version 2), endogenous (individual-individual, Version 3) 

3. Change the states x(j), for all j at the end of links created, by increasing their obesity weight of one 

level (S to W, W to O, O to O)  

4. Generate a new   and go to 2 
5. Stop when the graph G is no more changing. 
 

3.2. Homophilic dynamics simulations 

     On Figure 2, we have fixed the corporal states (obese, overweight and normal) following the 
distribution of the BMI in the French population [11] in 2009: obese (14,5%), overweight (31.9%,) 

and normal (53,6%) individuals. The tolerance has been taken at the level 0.25 and the connection 

probability has been chosen following the Version 1. Directed networks with 1000 nodes each have 

been simulated, with a probability to have forward directional (resp. bidirectional) links equal to 
a=0.6 (resp. b=0.2). The node positioning has been done following the attraction-repulsion 

Fruchterman-Reingold algorithm [12].  

 
 

 
 

Figure 3. Dynamics with a progressive clustering (from left to right) inside a small-world directed network with initial proportion of obese 

individuals in red (14,5%), overweight in pink (31.9%,) and normal in white (53,6%), with 0.25 tolerance and connection probability of the 

Version 1  

 

3.3. Equilibrium configurations 

     Under the homophilic rule, the networks are converging until an equilibrium configuration of both 
links of the undirected graph architecture and node states, independently of the initial architecture and 

initial state distribution. By using a simulation engine of the social network, we can study the speed of 

convergence to this equilibrium for all the initial topologies proposed in Section 2. The Figure 4 
shows that the relaxation time to the steady state (related to the speed of convergence to equilibrium) 

depends on the network topology. The shape of the initial and final “in-degree” distributions are about 

the same after applying the homophilic dynamics (Figures 4 and 5), but we can show that 

paradoxically in the small-word initial topology, the mean clustering coefficient diminishes, but the 
marginal clustering coefficient Cs calculated for each state s increases (this phenomenon being due to 

the modification of the state distribution): Cs = <Xs>/N, where <Xs> is the expectation of the random 

variable equal to the number of nodes in state s linked to a node in the same state s. The global 
clustering coefficient C is defined by: C = <X>/N, where <X> is the expectation of the random 

variable equal to the number of couples of linked nodes having the same state. The final value of the 

homophily depends weakly on the topology (Figure 6). The final configuration of the network has 
always the homophily maximum, the segregation into 3 groups depending on the topology (Figures 6 

and 7).  
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Figure 4. Evolution of the marginal clustering coefficient Cs for each state s and for the architectures and initial distribution of states (normal 

in blue, overweight in green and obese in red) of Section 2, with tolerance h equal to 0.25 and connection probability of the Version 3 

 

  In order to improve this study, a theoretical estimation of the speed of convergence to the 
equilibrium configuration could be made, as well as the consideration of the robustness of the process: 

do exist more than one equilibrium state, and if yes, are other “attractors” only fixed states or possibly 

periodic configurations? Which network parameters are critical, i.e., at which parameter perturbation 

(provoking a change in number or nature of attractors) is sensitive the dynamics? Which perturbation 
of the initial configuration of the social network changes attraction (stability) basins? All these 

problems will be addressed in a future work. 

 

 
 
 
Figure 5. Left: with connection probability of the Version 3, evolution of the global connectivity C coefficient at equilibrium as function of 

the mean tolerance <h>. Right: evolution of the relaxation time to equilibrium as function of the mean tolerance <h> 

 
3.4. Examples of dynamics of obesity 

     Homophily defined as above suggests that individuals tend to interact with those who resemble 

them in terms of alimentary behaviour and the structure of the social fabric is involved in the increase 
and current development of obesity [17-29]. 
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Figure 6. Homophilic dynamics for the architectures and initial distributions of states of Figure 5, with tolerance t equal to 0.25 and 

connection probability of Version 3 

 

 

 
 
Figure 7. Simulation of social graphs representing obesity network: initial conditions (a), asymptotic state in case of an homophilic graph 

Version 1 (b), random graph (c), scale free graph (d) and small world graph (e) 

 
     By using the simulation rules of Section 3.1., we compare the simulated graphs with real data in 

case of obesity. Four situations have been tested: the pure random graph (links chosen by chance), the 

free scale graph (the distribution of out-degrees follows a power law), the small world graph (links 

around hub nodes are reinforced) and homophilic graphs, with different versions of probability of 
linking. The approach described above has highlighted the necessity to integrate a random dynamics 

at each scale to better understand the evolution of the obesity pathology, e.g., in Figure 7, the 
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connectivity of the real social network representing the obesity spread is better taken into account in 

the homophilic network Version 1 (the qualitative differences between versions being small) than in 
the other versions: random, scale-free or small world ones. 

 

 

 

4     Demographic dynamics 
 

     For evaluating the number of suceptibles and to define them by age and sex (which are important 
factors in the occurrence of obesity), we need to develop a dynamic projection model by using key 

socio-demographic indicators of the studied population. The lack of comprehensive and documented 

data often not allows to use performant international tools of Individual Based Model (IBM) 
demographic simulation as FELICIE, DESTINIE, OMPHALE, MOGDEN, LIFEPATH,… [17-19]. 

So we proposed the model DOPAMID which requires less raw data for its dynamic projection 

method.  

4.1. DOPAMID model overview 

     The objective of the model is to make evolve a population in function of statistics based on its 
composition in age classes. This evolution allows to express patterns in the composition of the 

population. Statistics used are the distribution of the population according to the age and sex of the 

individuals, mortality, fertility, composition of families as well as the dependency of individuals. 

Starting from a population respecting these statistics, the model advances in time over a period of up 
to 90 years. The members of this population will therefore age, reproduce, come dependent, die…  
 

4.2. The model algorithm 

The decision taking is based on the generation of random numbers. For example, for sex at birth, 

statistics are: 51,35 % of males and 48,65 % of females. A random number between 0 and 1 is 

generated, and if it is less than 0,5135, the child will be a boy and a girl, if it exceeds. 
The initial number of human beings is supposed to be equal to 10,000. Each year and for each person, 

the scenario described in Figure 10 is applied. 

   We have for example simulated the evolution of the Iranian population between 2009 and 2050 (cf. 
Figure 8), for validating our model from real data and simulated projections coming from the US 

Bureau of Census [20]. A study of an important pathology associated to obesity, the type 2 diabetes 

[21], shows that the proportion of diabetic is equal to 3.5% in normal weight Iranian population, and 
6.4% and 14.3% respectively in overweight and obese population, representing an Odd ratio of  

respectively 1.7 (the 95%-confidence interval being equal to [1.1, 2.5]) and 4 (the 95%-confidence 

interval being equal to [2.7, 5.8]). The demographic modelling allows calculating for each age class 

the proportion of obese and the risk of type 2 diabetes: here for example, the Odd ratio per 10 years is 
equal to 1.2 (the 95%-confidence interval being equal to [1.1-1.4]). A precise distribution with respect 

to gender and age class can be found in [22].  

       The connection between the demographic dynamics and the social networks has to be carefully 
made in the future: it needs a deep knowledge (presently absent) on the structure by age class into the 

social networks, as well as on the rules of transmission and intergenerational inheritance of the 

alimentation and adapted physical activity habits. Nevertheless, the evolution of the size of the whole 
population has to be already introduced in order to fix the number of nodes and interaction links for 

calibrating our social networks models. 
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Figure 8. Left: top: simulation made by our DOPAMID model of the evolution of Iranian demography between 2009 and 2050, middle:  

same simulation by using the simulation algorithm of the US Census Bureau, bottom: real data in 2000. Right: ageing algorithm applied 
each year for each human being (http://www.census.gov/population/international/) 

 

 

5     Towards the proposal of an obesity preventive policy 
 

     The BMI has been defined about two centuries ago by a Belgian physician (A. Quételet) and it 

represents the basic tool for doing the obesity diagnosis and therapeutic surveillance New policies are 

now needed to contain this world pandemic and we suggest the following ways in order to watch and 
cure the obesity:  

1) defining new optimal threshold for defining obesity states and associated risks from the classical 

BMI [23] 

2) using a new index called the Body Adiposity Index (DAI) allowing differentiating muscular, 
skeletal and adipose masses [24] 

3) elucidating all genetic factors involved in the obesity genesis (endogenous individual factors) [25] 

4) searching for all metabolic factors implied in the development of the disease (nutrition, as well as 
predisposition to use glycolytic pathway more than oxidative phosphorylation in order to produce 

energy, like in the Warburg effect [26,27] 

5) identifying all social factors favouring the present epidemic in particular exogenous environmental 

factors, in social networks involving young individuals (educative, sportive, familial, social,…) in 
order to prevent actively the disease before the adult age (for example, cf. www.repop.fr) at school or 

during the hospital sojourns [28] 

6) studying all psycho-social factors leading to obesity stigmatization in relation to mental body 
image and self-esteem [29]. 

http://www.repop.fr/
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6     The dynamics of contacts 
 

6.1. Influence of the contact duration 

     Let introduce now a contact duration  and a contagion coefficient ß possibly depending on  [30]. 
It is possible to retrieve the quadratic term of interaction already present in all the classical models of 

contagion [30-40] by using a stochastic approach coming from the random chemistry of contacts [41-
57] for interpreting the rules of Section 3.1. developed in [58]. We have, if the demographic dynamics 

is neglected as well as the overweight transition:  

P(S(t+dt)=k, O(t+dt)=N-k) - P(S(t)=k, O(t)=N-k) = - ßk(N-k)dt 0
T
P(S(t-)=k, O(t-)=N-k)d 

 + ß(k+1)(N-k-1)dt 0
T
P(S(t-)=k+1, O(t-)=N-k-1)d, 

where S(t) (resp. O(t)) is the size of the susceptible (resp. obese) population at time t.  

     The microscopic equation above leads to the mean differential equation ruling the expectations of 
the random variables S and I:  

 

dE(S(t))/dt=-ß0
T
E(S(t-))E(I(t-))d  

 

and to the macroscopic equation: dS/d =-ß0
T
S(t-)I(t-)d, in which we found the quadratic term of 

the classical models of contagion. This quadratic term is also present in the interaction potential of 

Hopfield like networks in which the study of the robustness with respect to the contagion parameter 
change has been performed [59-69] as well as in recent studies taking into account the spatial 

character of the disease spread [70-79]. 
 

6.2. Confinement and Saturation 
     The localisation of contamination has been treated by different authors [80, 81]. When contagion 

occurs in confined locations (like professional, educational or residence buildings), we can use 

saturation dynamics terms coming from the enzymatic kinetics (cf. for example [82, 83]) for 
expressing all the possibilities to have together k from the S susceptible population and i from the O 

obese population in n contagion sites located in B buildings. We call this quantity the partition 

function P(S,0) and B(∂
2
LogP/∂LogS∂LogO)/n is the total mean number of occupied sites, considered 

as proportional to the infection rate, and we have: 
 

dS(t)/dt = -ßB(∂
2
LogP/∂LogS∂LogO)/n + fS - µS + O 

dO(t)/dt  = ßB(∂
2
LogP/∂LogS∂LogO)/n + f ’O - µ’O - O, 

 

where the demographic parameters f (fecundity) and µ (mortality) are taken into account for the 

susceptible as well as for the obese population (f’ and µ’) and where  denotes the recovering rate at 
which an obese recovers an healthy weight. 

 
   An example of such a dynamics is the saturation Michaëlian one, if there is only one contagion site: 

 

P(S,O) = (1+ vC,SS)(1+ vC,OO),  
 

where vC,S (resp. vC,I) is the probability for a susceptible (resp. obese) to access a contagion site. If vC,S 

= 1 and vC,O << 1, then the infection rate equals about ßSO/(1+S) and the equations of the dynamics 
are: 

 

dS(t) = - ßS(t)O(t)/(1+S(t)) + (f - µ + )S(t) 

dO(t) =   ßS(t)O(t)/(1+S(t)) + (f’ - µ’ - )O(t) 
 

6.3 Non-linear interactions and complex dynamics 

     Threshold interactions used in classical Hopfield like models [59-69] are already non-linear ones, 
but take into account only pair contacts, neglecting possible additional effects due to the presence and 

mutual interaction of more than two individuals in the contagion process. It is now possible to 
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introduce for modelling this possible potentialization a formalism for being able to define non-linear 

n-uples interactions [84] and simulate the model in a spatial Markovian context like in the present 
study or in certain case of remote spatial influence (due to the new social networking on the web) in a 

renewal context [85], as well different time scales modelling complex dynamics, for separating the 

local dynamics from the global trend of the obesity epidemic [86]. 
 

7     Conclusion 
 

     Results shown in this paper about social networks involved in obesity have been obtained by 

modeling and simulating networks with various initial architecture (random, scale-free, small-world, 
empirical) evolving under the so-called social homophilic constraint. The computed evolution of these 

networks seems to be similar to the real one observed in developed countries for a socially 

“contagious” disease, the obesity. Complementary studies are now required allowing from large 
samples estimating the unobservable parameters linked both to initial network architecture (taking 

into account the specificity of the sub-populations of susceptibles, e.g., differences between the 

schoolchildren, professional and elderly people networks) and to their weights evolution, as well as 
incorporating the demographic dynamics [87], a more accurate model of social contacts through 

which the disease can spread out and some elements about the psychogenesis of the homophilic 

dynamics [88-90]. 
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Reinhart--Heinrich Doctoral Thesis Award 
 

 

 ESMTB announces the annual Reinhart Heinrich Doctoral Thesis Award to be     

 presented to the student submitting the best doctoral thesis within the current year 2014 in any area of   
 Mathematical and Theoretical Biology. 

 

Professor Reinhart Heinrich (1946 – 2006) started his research career in theoretical physics and then  moved       

into biochemistry, becoming a full professor and head of theoretical biophysics at the Humboldt University, 

Berlin in 1990. He is considered a father of the field that is now named Systems  Biology, since he investigated 
various topics such as modelling metabolic networks and metabolic control theory, modelling of signal 

transduction networks, nonlinear dynamics as applied to biological systems, protein translocation, lipid 

translocation, vesicular transport, and even DNA repair. Reinhart Heinrich was always searching for the 

principles that underlie observations, looking for different perspectives and connecting theoretical abstraction 
with biological evidence. In this way, he inspired numerous students, gave them insight and direction for future 

research in modern mathematical and theoretical biology, and organized a large number of memorable 

conferences. Gratefully acknowledging his stimulating support of our interdisciplinary field and, in particular, 
his way of guiding students and young scientists, the Board of ESMTB decided to offer a Doctoral Thesis 

Award annually to commemorate Reinhart Heinrich and his legacy in mathematical and theoretical biology. 

 
 

Prize Awarding Committee includes: 
Carlos Braumann 

Andreas Deutsch 
Philip Maini 

David Rand 

Stefan Schuster (former assistant to Reinhart Heinrich)   
 

Award 
A summary of the thesis receiving the award will be published as the lead article in the 2013 issue of 

the European Communications in Mathematical and Theoretical Biology. The award includes: 
an invitation to present a lecture at the forthcoming triennial ESMTB Conference 
or, alternatively, 
a limited travel grant by ESMTB for a scientific visit of the recipient’s own choice, 
1 year's free membership of ESMTB. 
A voucher for Springer books 

 

 

Application 
Potential applicants may be nominated by any ESMTB member. To nominate a person for the 

Reinhart Heinrich Doctoral Thesis Award, the following information should be submitted to 

Andreas Deutsch (andreas.deutsch@tu-dresden.de): 

1. Name, address, phone number, affiliation, and email address of the nominator. 

2. Name, address, phone number, affiliation, and email address of the nominee. 

3. A detailed statement describing why the nominee should be considered for the award. 

4. An extended summary of the thesis (ca. 2-5 pages plus eventual pictures). 

5. A CV of the nominee in some form. 

 

 

Closing date for nominations is 30th November 2014, by which time the thesis should have received 

final acceptance by the institution granting the doctoral degree. 

Shortlisted applicants will be asked to send their full thesis.
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